Ensayo bactericida del suero para la evaluación de la respuesta inmune inducida por vacunas antimeningocócicas y anticoléricas

  • Bárbara Cedré-Marrero Instituto Finlay
  • Yaremis Hernández Instituto Finlay
Palabras clave: ensayo bactericida, vacunas, bacterias gramnegativas

Resumen

La susceptibilidad al sistema bactericida del suero es una característica de las bacterias gramnegativas. Existen muchos ejemplos en las enterobacterias, de hecho cualquier procariote que presente una membrana lipídica pudiera ser potencialmente susceptible a la lisis mediada por anticuerpos dependiente del complemento, aunque existen cepas que muestran resistencia al sistema bacteriolítico. Estas son frecuentemente aisladas como agente causal de infecciones que involucran daño tisular, lo que indica que la resistencia a la actividad lítica del suero es determinante de la virulencia en algunas infecciones debido a bacterias gramnegativas. Para algunas enfermedades causadas por estas bacterias la vacunación constituye la medida de prevención más efectiva, como es el caso del cólera y la enfermedad meningocócica. La inducción de anticuerpos con capacidad lítica, producto de la vacunación, se considera en muchos casos el mejor correlato con la protección y se estima que individuos que desarrollan anticuerpos bactericidas, ya sea por una infección clínica o por la vacunación, están protegidos contra la infección o la enfermedad. De ahí que el ensayo bactericida del suero sea la prueba de oro para evaluar la eficacia de muchas vacunas. Ensayos clínicos llevados a cabo con vacunas contra los serogrupos A, B, C, Y y W 135 de N. meningitidis y con vacunas de cólera, ya sean vivas atenuadas o inactivadas, han demostrado la inducción de anticuerpos con actividad lítica que luego han correlacionado con la protección en ensayos de eficacia o frente a un reto experimental. Por lo que resulta imprescindible la estandarización y validación de estos ensayos para su empleo como criterio de inmunogenicidad en el desarrollo de estas vacunas.

Citas

Taylor PW. Bactericidal and Bacteriolytic Activity of Serum Against Gram-Negative Bacteria. Microbiol Rev 1983;47:46-83.

Abbas A, Lichtman A, Pober J. Mecanismos efectores de la inmunidad humoral. En: Abbas A, Lichtman A, Pober J, editores. Inmunología celular y molecular. 4ta ed. Madrid: McGraw-Hill Interamericana; 2002 p. 322-47.

Chatterjee S, Chaudhuri K. Lipopolysaccharides of Vibrio cholerae . Biological functions. Biochimica et Biophysica Acta 2006;1762(1):16-29.

Rus H, Niculescu F, Shin M. Role of C5b-9 complement complex in cell cycle and apoptosis. Immunol Rev 2001;180:49-55.

Harris JB, LaRocque RC, Chowdhury F, Khan AI, Logvinenko T, Faruque AG, et al. Susceptibility to Vibrio cholera infection in a cohort of household contacts of patients with cholera in Bangladesh. Plos Negl Trop Dis 2008;2(4):1-8.

Xu G, Wang S, Zhuang L, Hackett A, Gu L, Zhang L, et al. Intramuscular delivery of a cholera DNA vaccine primes both systemic and mucosal protective antibody responses against cholera. Vaccine 2009;27:3821-30.

Ravichandran M, Ali SA, Rashid NH, Kurunathan S, Yean CY, Ting LC, et al. Construction and evaluation of a O139 Vibrio cholerae vaccine candidate based on a hem A gene mutation. Vaccine 2006;24:3750-61.

López AL, Clemens JD, Deen J, Jodar L. Cholera vaccine for the developing world. Hum Vaccin 2008; 4(2):165-9.

Asaduzzaman M, Ryan ET, John M, Hang L, Khan AI, Faruque AS, et al. The major subunit of the toxin coregulated pilus TcpA induces mucosal and systemic immunoglobulin A immune responses in patients with cholera caused by Vibrio cholerae O1 and O139. Infect Immun. 2004; 72:4448-54.

Qadri F, Ryan ET, Faruque AS, Ahmed F, Khan AI, Islam MM, et al. Antigen-specific immunoglobulin A antibodies secreted from circulating B cells are an effective marker for recent local immune responses in patients with cholera: comparison to antibody-secreting cell responses and other immunological markers. Infect Immun 2003;71:4808-14.

Provenzano D, Kovac P, Wase WF. The ABCs (antibody, B cells, and carbohydrate epitopes) of cholera immunity: considerations for an improved vaccine. Microbiol Imunol 2006;50:899-927.

Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007;25:5467-84.

Qadri F, Bhuiyan TR, Raqib R, Alam MS, Alam NH, Svennerholm AM, et al. Acute dehydrating caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut 2004; 53:62-69.

Flach CF, Qadri F, Bhuiyan TR, Alam NH, Jenninsche E, Lonnroth I, et al. Broad up-regulation of innate factors during acute cholera. Infect Immun 2007;75:2343-50.

Bouvet J, Fischetti V. Diversity of antibody-mediated immunity at the mucosal barrier. Infect Immun 1999;67:2687-91.

Meeks MD, Saksena R, Ma X, Wade TK, Taylor RK, Kovac P, et al. Synthetic fragments of Vibrio cholerae O1 Inaba O-specific polysaccharide bound to a protein carrier are immunogenic in mice but do not induce protective antibodies. Infect Immun 2004;72:4090-101.

Paulovicova E, Machova E, Hostacka A, Bystricky S. Immunological properties of complex conjugates based on Vibrio cholerae O1 Ogawa lipopolysaccaride antigen. Clin Exp Immunol 2006;144:521-7.

Boutonier A, Dassay B, Duménil R, Guénolé A, Ratsitorahina M, Migliani R, et al. A simple and convenient microtiter plate assay for the detection of bactericidal antibodies to Vibrio cholerae O1 and Vibrio cholerae O139. J Microbiol Methods 2003;55:745-53.

Ryan ET, Calderwood SB, Qadri F. Live attenuated oral cholera vaccines. Expert Rev Vacc 2006;5:483-94.

Ryan ET, Calderwood SB. Cholera vaccines. Clin Infect Dis 2000;31:561-5.

Yang JS, Kim HJ, Yun CH, Kang SS, Im J, Kim HS, et al. A semi-automated vibriocidal assay for improved measurement of cholera vaccine-induced immune responses. J Microbiol Meth 2007;71:141-46.

Crean TI, John M, Calderwood SB, Ryan E. Optimizing the germfree mouse model for in vivo evaluation of oral Vibrio cholerae vaccine in vector strains. Infect Immun 2000;68:977-81.

Liang W, Wang S, Fenggang Y, Zhang L, Guoming Q, Liu Y, et al. Construction and evaluation of a safe, live, oral Vibrio cholerae vaccine candidate, IEM108. Infect Inmun 2003;71:5498-504.

OPS. Métodos de laboratorio para el diagnóstico de Vibrio cholerae. En: Programa Especial de Publicaciones. Washington, DC: OPS; 1994.

Richie E, Punjab N, Sidharta Y, Peetosutan K, Sukandar M, Wasserman S, et al. Efficacy trial of a single-dose live oral cholera vaccine CVD103-HgR in North Jakarta, Indonesia, a cholera-endemic area. Vaccine 2000;18:2399-410.

Benenson AS, Saad A, Mosley WH. Serological studies in cholera. Bull Wld Hlth Org 1968;38:277-85.

Cedré B, Viel Y, Rodríguez T, Año G, Pino Y, García H, et al. Validación del ensayo vibriocida colorimétrico para determinar anticuerpos séricos contra cepas candidatas vacunales de V. cholerae . Vaccimonitor 2003;12(1):1-4.

Qadri F, Chowdhury MI, Faruque SM, Salam MA, Ahmed T, Begum YA, et al. Breast milk reduces the risk of illness in children of mothers with cholera: observations from an epidemic of cholera in Guinea-Bissau. J Pediatr Infect Dis 2006;25:1163-6.

Harris JB, Khan AI, LaRoque RC, Dorer DJ, Chowdhury F, Faruque AG, et al. Blood group, immunity and risk of infection with Vibrio cholerae in an area of endemicity. Infect Immun 2005;73:7422-7.

Ochoa R. Respuesta inmune contra inmunógenos vacunales. Capítulo 1. En: Bases metodológicas para la evaluación de anticuerpos en ensayos clínicos de vacunas. Ciudad de la Habana: Finlay Ediciones; 2004.

Hellerud BC, Aase A, Herstad TK, Næss LM, Kristiansen LH, Trøseid AM, et al. Critical Roles of Complement and Antibodies in Host Defense Mechanisms against Neisseria meningitidis as Revealed by Human Complement Genetic Deficiencies. Infect Immun 2010;78:802-9.

Borrow R, Aaberge IS, Santos GF, Eudey TL, Oster P, Glennie A, et al. Interlaboratory Standardization of the Measurement of Serum Bactericidal Activity by Using Human Complement against Meningococcal Serogroup B, Strain 44/76-SL, before and after Vaccination with the Norwegian MenBvac Outer Membrane Vesicle Vaccine. Clin and Diag Lab Immun 2005;12:970-6.

Mountzouros KT, Howell AP. Detection of Complement-Mediated Antibody-Dependent Bactericidal Activity in a Fluorescence-Based Serum Bactericidal Assay for Group B Neisseria meningitidis. J Clin Microb 2000;38:2878-84.

Rodríguez T, Lastre M, Cedré B, Fajardo EM, del Campo J, Delgado I, et al. Validation of colorimetric assay to detect complement-mediated antibody-dependent bactericidal activity against serogroups B and C Neisseria meningitidis . Biological Journal of the International Association of Biological Standardization 2003;31:209-12.

Jokhdar H, Borrow R, Sultan A, Adi M, Riley C, Fuller E, et al. Immunologic Hyporesponsiveness to Serogroup C but Not Serogroup A following Repeated Meningococcal A/C Polysaccharide Vaccination in Saudi Arabia. Clin and Diag Lab Immun 2004;11:83-8.

Balmer P, Borrow R. Issues surrounding standardization of meningococcal group W 135 serology. Vaccine 2007;25:63-8.

Occhionero M, Usai G, Di Martino M, Le Moli S, Stroffolini T, Mastrantonio P. Serum antibodies to capsular polysaccharide vaccine of group A and C Neisseria meningitidis in military recruits in Italy. Immunol Clin 1990;9:159-64.

Mandrell RE, Azmi FH, Granoff DM. Complement-mediated bactericidal activity of human antibodies to poly a238 N-acetyl neuraminic acid, the capsular polysaccharide of Neisseria meningiditis serogroup B. J Infect Dis 1995;172:1279-89.

Santos GF, Deck RR, Donnelly J, Blackwelder W, Granoff DM. Importance of Complement Source in Measuring Meningococcal Bactericidal Titers. Clin and Diag Lab Immun 2001;8:616-23.

Gill CJ, Ram S, Welsch JA, Detora L, Anemona A. Correlation between serum bactericidal activity against Neisseria meningitidis serogroups A, C, W135 and Y measuring using human versus rabbit serum as the complement source. Vaccine 2011;30:29-34.

Joseph H, Balmer P, Bybel M, Papa T, Ryall R, Borrow R. Assignment of Neisseria meningitidis Serogroups A, C, W135, and Y Anticapsular Total Immunoglobulin G (IgG), IgG1, and IgG2 Concentrations to Reference Sera. Clin and Diag Lab Immun 2004;11:1-5.

WHO. Standardization and validation of serological assays for the evaluation of immune responses to Neisseria meningitidis serogroup A/C vaccines. Geneva: WHO; 1999. Disponible en: http:// www.who.int/gpv-documents .

Centro para el Control Estatal de la Calidad de los Medicamentos. Ministerio de Salud Pública. República de Cuba. Regulación No. 41-2007. Validación de métodos analíticos. La Habana: CECMED; 2007.

Martin D , McCallum L, Glennie A, Ruijne N, Blatchford P, O'Hallahan J, et al. Validation of the serum bactericidal assay for measurement of functional antibodies against group B meningococci associated with vaccine trials. Vaccine 2005;23:2218-21.

Cedré B, Hernández Y, Delgado I, Izquierdo L, García L. Validación del ensayo bactericida en suero para los serogrupos A, C y W 135 de Neisseria meningitidis. VacciMonitor 2012;21(2):31-4.

Publicado
2016-01-15
Cómo citar
Cedré-Marrero, B., & Hernández, Y. (2016). Ensayo bactericida del suero para la evaluación de la respuesta inmune inducida por vacunas antimeningocócicas y anticoléricas. VacciMonitor, 21(3), 37-46. Recuperado a partir de https://vaccimonitor.finlay.edu.cu/index.php/vaccimonitor/article/view/64
Sección
Artículos de Revisión