Mycobacterium tuberculosis: factores de virulencia

  • Reinier Borrero Instituto Finlay
  • Nadine Álvarez Instituto Finlay
  • Fátima Reyes Instituto Finlay
  • María Elena Sarmiento Instituto Finlay
  • Armando Acosta Instituto Finlay
Palabras clave: Mycobacterium tuberculosis, factores de virulencia, genes

Resumen

Mycobacterium tuberculosis es el agente causal de la tuberculosis, una de las enfermedades infecciosas más letales en el mundo. La única vacuna disponible para su control es el BCG, sin embargo, falla en la protección contra la tuberculosis pulmonar, siendo esta la forma más frecuente y responsable de la diseminación. La identificación de factores de virulencia del microorganismo causal pudiera ayudar en el desarrollo de un nuevo candidato vacunal que sea capaz de neutralizar la acción de esos determinantes patogénicos. El empleo de diferentes modelos animales ha permitido reproducir las etapas de la enfermedad, así como medir o cuantificar la virulencia de las distintas cepas circulantes de Mycobacterium tuberculosis. Las mutaciones génicas y otras técnicas de biología molecular han posibilitado dilucidar los genes específicos involucrados en la virulencia de este microorganismo que codifican para múltiples y complejos factores de diferente naturaleza.

Citas

Smith I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews 2003;16:463-96.

Beresford N, Patel S, Armstrong J, Balázs SZ, Fordham-Skelton AP, et al. MptpB a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 2007;406:13-8.

Dormans J, Burger M, Aguilar D, Hernández-Pando R, Kremer K, Roholl P, et al. Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clin Exp Immunol 2004;137:460-8.

World Health Organization (WHO). Tuberculosis Report No 411; 2009.

Ryndak M, Wang S, Smith I. PhoP a key player in Mycobacterium tuberculosis virulence. Trends in Microbiology 2008;16:528-34.

Clark-Curtiss J E and Haydel S E. Molecular genetics of Mycobacterium tuberculosis pathogenesis. Annual Review of Microbiology 2003;57:517-49.

López LM, Díaz F, Vallecillo AJ, Esquivel H, Gutiérrez JA. Tuberculosis humana y bovina en Latinoamérica: De estudios sobre virulencia hacia herramientas para su control. Rev Latinoam Microbiol 2006;48 (2):173-8.

Gorocica P, Jiménez-Martínez MC, Garfias Y, Sada I y Lascurain R. Componentes glicosilados de la envoltura de Mycobacterium tuberculosis que intervienen en la patogénesis de la tuberculosis. Rev Inst Nal Enf Resp Mex 2005; 18 (2):142-53

Wolf AJ, Linas B, Trevejo-Núñez GJ, Kincaid E, Tamura T, Takatsu K, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 2007;179:2509-19.

Hickman SP, Chan J and Salgame P. Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J Immunol 2002;168:4636-42.

Jiao X, Lo-Man R, Guermonprez P, Fiette L, Deriaud E, Burgaud S, et al. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J Immunol 2002;168:1294-1301.

Kinhikar AG, Verma I, Chandra D, Singh KK, Weldingh K, Andersen P, et. al. Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol 2010;75(1):92-106.

Mehta P, Karls R, White E, Ades E, Quinn F. Entry and intracellular replication of Mycobacterium tuberculosis in cultured human microvascular endothelial cells Microbial Pathogenesis 2006; 41(2):119-24.

Kaufmann SH. Immune response to tuberculosis: experimental animal models. Tuberculosis 2003;83(1-3):107-11.

Davis JM, Ramakrishnan L. The Role of the Granuloma in Expansion and Dissemination of Early Tuberculous Infection. Cell 2009; 136(1):37-49.

Takimoto H, Maruyama H, Shimada KI, Yakabe R, Yano I, kumazawa Y. Interferon-ã independent formation of pulmonary granuloma in mice by injections with trehalose dimycolate (cord factor), lipoarabinomannan and phosphatidylinositol mannosides isolated from Ìycobacterium tuberculosis. Clinical and experimental immunology 2006; 144(1):134-41.

Converse PJ, Dannenberg AM, Estep JE, Sugisaki K, Abe Y, Schofield BH, et al. Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect Immun 1996;64: 4776- 87.

Melo MD, and Stokes RW. Interaction of Mycobacterium tuberculosis with MH-S, an immortalized murine alveolar macrophage cell line: a comparison with primary murine macrophages. Tubercle Lung Dis 2000; 80:35-46.

Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, et al. Reprogramming of the macrophage transcriptome in response to interferon-g and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 2001;194: 1123-40.

Wei J, Dahl JL, Moulder JW, Roberts EA, O'Gaora P, Young D B, et al. Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J Bacteriol 2000;182:377-84.

Stokes RW, and Doxsee D. The receptor-mediated uptake, survival, replication, and drug sensitivity of Mycobacterium tuberculosis within the macrophage-like cell line THP-1: a comparison with human monocytederived macrophages. Cell Immunol 1999;197:1-9.

Wilson TM, de Lisle GW, and Collins DM. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microb 1995;15:1009-15.

Mariani F. Mycobacterium tuberculosis H37Rv comparative gene-expression analysis in synthetic medium and human macrophage. Gene 2000;253(2):281-91.

McCarthy TR, Torrelles J B, MacFarlane ASh, Katawczik M, Kutzbach B, DesJardin LE, et. al. Overexpression of Mycobacterium tuberculosis manB, a phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis in Mycobacterium smegmatis and mycobacterial association with human macrophages. Molecular Microbiology 2005;58:774-90.

Muttucumaru DG N and Parish T. The Molecular Biology of Recombination in Mycobacteria: What Do We Know and How Can We Use It? Curr Issues Mol Biol 2004;6:145-58.

Gey Van Pittius NC, Gamieldien J, Hide W, Brown G D, Siezen RJ, and Beyers A D. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C gram-positive bacteria. Genome Biol 2001;2(10):1-18.

Wang R, Prince JT and Marcotte EM. Mass spectrometry of the Protein M. smegmatis proteome: expression levels correlate with function, operons, and codon bias. Genome Res 2005;15:1118-26.

Ãlvarez N, Borrero R, Reyes F, Camacho F, Mohd N, Sarmiento M, Acosta A. Mecanismos de evasión y persistencia de Mycobacterium tuberculosis durante el estado de latencia y posibles estrategias para el control de la infección latente. Vaccimonitor 2009;18 (3):18-25.

Brosch R, SV Gordon, M Marmiesse, P Brodin, C Buchrieser, K Eiglmeier, et al. A new evolutionary scenario for the Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2002;99:3684-9.

Pai RK, Pennini M, Tobian AA, Canaday DH, Boom WH, Harding CV. Prolonged Toll-like Receptor signaling by Mycobacterium tuberculosis and its 19-kDa lipoprotein inhibits Interferon-g-induced regulation of selected genes in macrophages. Infect Immun 2004; 72:6603-14.

Raynaud C, Papavinasasundaram KG, Speeght RA, Springer B, Sander P, Bottger EC, et. al. The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol Microbiol 2002;46:191-201.

Vergne I, Fratti RA, Hill PJ, Chea J, Belisle J and Deretic V. Mycobacterium tuberculosis phagosome maduration arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 2004;15:751-60.

Sambandamurthy V K and Jacobs W R. Live attenuated mutants ofMycobacterium tuberculosis as candidate vaccines against tuberculosis.Microbes and Infection 2005;7:955-61.

Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernández-Pando R, Thole J, et al. PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence. PLoS ONE 2008;3(10). e3496.doi:10.1371/journal.pone.0003496

Publicado
2016-03-15
Cómo citar
Borrero, R., ÁlvarezN., Reyes, F., Sarmiento, M., & Acosta, A. (2016). Mycobacterium tuberculosis: factores de virulencia. VacciMonitor, 20(1), 34-38. Recuperado a partir de https://vaccimonitor.finlay.edu.cu/index.php/vaccimonitor/article/view/119
Sección
Artículos Originales

Artículos más leídos del mismo autor/a

Nota: Este módulo requiere de la activación de, al menos, un módulo de estadísticas/informes. Si los módulos de estadísticas proporcionan más de una métrica, selecciona una métrica principal en la página de configuración del sitio y/o en las páginas de propiedades de la revista.