Estrategias de obtención de proteínas recombinantes en Escherichia coli

  • José García Centro de Ingeniería Genética y Biotecnología
  • Zeila Santan Centro de Ingeniería Genética y Biotecnología
  • Lourdes Zumalacárregui Facultad de Ingeniería Química Instituto Superior Politécnico "José Antonio Echeverría"
  • Marisel Quintana-Esquivel Centro de Ingeniería Genética y Biotecnología
  • Diamilé González Centro de Ingeniería Genética y Biotecnología
  • Gustavo Furrazola Centro de Ingeniería Genética y Biotecnología
  • Oscar Cruz Centro de Ingeniería Genética y Biotecnología
Palabras clave: proteína recombinante, Escherichia coli, factores genéticos, factores fisiológicos, fermentación


La expresión de proteínas recombinantes se ha favorecido con el uso de Escherichia coli debido a su relativo bajo costo, alta densidad de cultivo, su fácil manipulación genética y a las diversas herramientas biotecnológicas disponibles que son compatibles. En este artículo se presentan algunas estrategias para la expresión de Escherichia coli; se destacan factores genéticos y fisiológicos que incluyen: número de copias del vector de expresión, características del gen, estabilidad del ácido ribonucleico mensajero, promotor empleado, cepa utilizada, composición del medio de cultivo, parámetros de operación en el fermentador y también se abordan la conservación de cepas y la estrategia de cultivo y purificación.


Ferrer N, Domingo J, Corchero J, Vázquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories 2009;8(1):17-8.

Perry Chou C. Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 2007;76:521_32.

Jonasson P, Liljeqvist S, Nygren PA, Ståhl S. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol Appl Biochem 2002;35(2):91-105.

Choi JH, Keum KC, Lee SY. Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science 2006;61:876-85.

Santana H, Martínez E, Sánchez J C, Moya G, Sosa, R, Hardy E, et al. Molecular characterization of recombinant human interferon alpha-2b produced in Cuba. Biotecnología Aplicada 1999;16(3):154-9.

Lehmann K, Hoffmann S, Neudecker P, Suhr M, Becker W M, Rosch P. High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h2. Protein Expr Purif 2003;31:250-9.

Bessette PH, Aslund F, Beckwith J, Georgiou G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 1999;96:13703-08.

Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science 1996;271:1519_26.

Weikert C, Sauer U, Bailer J. An E. coli Host strain useful for efficient overproduction of secreted recombinant protein. Biotech Bioeng 1997;59(3):386-91.

Nordström K, Uhlin B E. Runaway replication plasmids as tools to produce large quantities of proteins from cloned genes in bacteria. Biotechnology 1992;10:661-6.

Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS. Plasmid-encoded protein: the principal factor in the "metabolic burden" associate with recombinant bacteria. Biotechnol Bioeng 1990;35:668-81.

Lee CP, Li P, Inouye H, Brickman ER, Beckwith J. Genetic studies on the instability of b-galactocidase to be translocated across the Escherichia coli cytoplasmatic membrane. J Bacteriol 1989;171:4609-16.

Kane JF. Effects of rare codon clusters on high-level expressions of heterologous protein in Escherichia coli. Curr. Opin. Biotechnol. 1995;6:494-500.

Bechhofer D. 5¢ m RNA stabilizers. In Belasco JG, Brawerman G, eds. Control of messenger RNA stability. San Diego: Academic Press; 1993. p. 31-52.

Hanning G, Makrides S C. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 1998; 16:54-60.

Espinosa R, Caballero E, Musacchio A, Silva R. Production of a recombinant, immunogenic protein, P64k, of Neisseria meningitidis in Escherichia coli in fed-batch fermenters. Biotechnology Letters 2002;24(5):343-6.

Chevalet L, Robert A, Gueneau F, Bonnefoy, JY y Ngugen T. Recombinant protein production driven by the tryptophan promoter is tightly controlled in ICONE 200, a new genetically engineered E. coli mutant. Biotechnology and Bioengineering 2000;69(4):351-8.

Götting C, Thierbach G, Pühler A, Kalinowski J. Versatile low-copy- number plasmids for temperature inducible overexpression of bacterial genes in Escherichia coli. BioTechniques 1998;24:362-6.

Gronenborn B. Overproduction of phage lambda repressor under control of the lac promoter of Escherichia coli. Mol. Gen. Genet. 1976;148:243-50.

Chermojovsky Y, Mory Y, Vaks B, Funstein SI, Segev D, Revel M. Production of human interferon in E. coli under lac and tryplac promoter control. Ann NY Acad. Sci 1983;413:88-96.

Sørensen HP, Mortensen KK. Advanced genetics strategy for recombinant protein expression in Escherichia coli. Journal of Biotechnology 2005;115:113-28.

Jonasson P, Liljeqvist S, Nygren P, Stahl S. Genetic design for facilitated production and recovery of recombinant proteins in E coli Biotechnol. Appl. Biochem 2002;35:91_105.

Organización Mundial de la Salud. Serie de Informes Técnicos. Anexo 1 "Prácticas adecuadas para la fabricación de productos biológicos". Ginebra: OMS: 1992.

ICH. Quality of Biotechnological Products: Analysis of the expression construct in cells used for production of rDNA derived products (Q5B) 1997. Disponible en:

ISO/TS 11133-1. Part 2 "Practical guidelines on performance testing of culture media". Sydney, Australia: ISO; 2009.

Tran QH, Unden G. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur J Biochem 1998;251(1-2):538-43.

Konstantin B, Naoki N, Toshiomi Y. Glucose feeding strategy accounting for the decreasing oxidative capacity of recombinant E. coli in fed-batch cultivation for phenilalanine production. Journal of Fermentation and Bioenginnering 1990;70(4):253-60.

Monod J. La technique de culture continue, théorie et applications. Ann Inst Past 1950;79:390-410.

Kleman G, Strohl W. Acetate metabolism by Escherichia coli in high-cell-density fermentation. Appl Environ. Microbiol. 1994;60(11) 3952-8.

Lee SY. High cell density culture of Escherichia coli. Tibtech 1996;14:98-105.

Makrides SC. Strategies for achieving high level expression of genes in Escherichia coli. Microbiol Rev 1996;60(3):512-38.

Shimizu N, Fukusono S, Harada Y, Fujimori K, Gotoh K, Yamasaki Y. Mass production of human epidermal growth factor using fed-batch cultures of recombinant Escherichia coli. Biotechnol Bioeng 1991;38(1):37-42.

Markl H, Dubach AC, Ogbonna JC. Cultivation of Escherichia coli to high cell densities in a dialysis reactor. Appl Microbiol Biotechnol 1993;39(1):48-52.

Babu KR. Production of interferon alpha in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl Microbiol Biotechnol 2000;53(6):655-60.

Manderson D, Robert A, Dempster A, Chisti Y. A recombinant vaccine against hydatidosis: production of the antigen in Escherichia coli. J Ind Microbiol Biotechnol 2006;33:173_82.

Luli G W, Strohl WR. Comparison of growth, acetate production and acetate inhibition of Escherichia coli strains in batch and fed batch fermentations. Appl Environ Microbiol 1990;56: 1004-11.

Tripathi NK, Sathyaseelan K, Jana AM, Rao PVL, Kang WK, Park TH. High Yield Production of Heterologous Proteins with Escherichia coli Defence. Science Journal 2009;59(2):137-46.

Lin HY. Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited-fed batch cultivation of Escherichia coli. Biotechnol Bioeng 2001;75(5):347-57.

Akesson M, Hagander P, Axelsson J. Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 2001;73(3): 223-30.

Du P, Ye Q, Yu JT. Cultivation integrated with acetate filtration on Escherichia coli. Sheng Wu Gong Cheng Xue Bao; 2000;16(4):528-30.

Zhang WC. High cell density culture of phosphotransacetylase mutants of Escherichia coli BL21(DE3). Sheng Wu Gong Cheng Xue Bao 2001;17(1):59-63.

Beckley K, Verhaert P, van der Wielen LAM, Hubbuch J, Ottens M. Rational and systematic protein purification process development: the next generation. Trends Biotechnol 2009;27(12):673-79.

Gómez R, Madrazo J, González L, Chinea G, Musacchio A, Rodríguez A, et al. Caracterización estructural y funcional de la proteína recombinante P64k de Neisseria meningitidis. Biotecnología Aplicada 1999;16(2):83-7.

Ward W, Swiatek G. Protein Purification. Current Analytical Chemistry 2009;5(2):1-21.

Purifying Challenging Proteins. Principles and Methods. Uppsala, Sweden: GE Healthcare Bio-Sciences; 2007.

Middelberg APJ. Preparative protein refolding. Trends in Biotechnology 2002; 20(10):437-43.

Geng X, Wang C. Protein folding liquid chromatography and its recent developments. Journal of Chromatography B. 2007;849(1):69-80.

Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E. coli. Current Opinion in Biotechnology 1998; 9(5):497-501.

Curling J. Process Chromatography: Five Decades of Innovation. BioPharm Int 2007;20 (Suppl. 1):10-20.

Chen R, Huang C, Newton B, Ritter G, Old L, Batt C. Factors affecting endotoxin removal from recombinant therapeutic proteins by anion exchange chromatography. Prot Exp Purif 2009;64:76-81.

Cómo citar
García, J., Santan, Z., Zumalacárregui, L., Quintana-Esquivel, M., González, D., Furrazola, G., & Cruz, O. (2015). Estrategias de obtención de proteínas recombinantes en Escherichia coli. VacciMonitor, 22(2), 30-39. Recuperado a partir de
Artículos Originales